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ABSTRACT
/0185

An approximation scheme is developed for calculating the
equilibrium properties of a system containing both short range and weak
long range interactions. The results are applied to the calculation
of the pair correlation and equation of state for an electron gas
in a neutralizing background. Although the starting point is the
B-BG-K-Y hierarchy, the short-range divergence usually encountered
in the "dynemic" approach is avoided, and the results (calculated
through second order in the plasma parameter) are found to be

in agreement with previous calculations by diagrammatic methods.

AvTHorn



1. Introduction
Most previous derivationsts ;3 of the equilibrium properties of

plasma have relied on the diagrammatic techniques introduced by Mayerh:5.
While this approach has been elegantly systematized by Meeronl, the physical
motivation for the choice of diagrams seems unclear; furthermore it does

not appear possible to generalize the method to non-equilibrium situations.

A sécond type of approach involves the approximate solution of
coupled integro-differential equations (this is sometimes called the
"equation of motion" method), and has been used quite successfully by
Bogoliubov6 and others7’8’9n However all attempts to carry the theory
beyond first order in the plasma parameter have encountered a short-range
divergence. Such divergences are of two types: (1) For a multicomponent
Plasma, the presence of attractive forces leads to a divergence unless
bound states are taken into account. This difficulty seems never to
ha&e been adequately treated by any method (however cf. Theimerlo).\

(2) Even for purely repulsive forces (e.g. the electron gas in a uniform
positive background) a divergence occurs if one makes the usual assumption
that the Coulomb potential is much less than the thermal energy. This is
clearly a less fundamental difficulty, and is a conéequence of the approxima-

tion method.

The present work employs a method similar to that of Bogoliubov
in which divergences of type (2) do not occur. They are avolded by splitting
the Coulomb potential up into two parts, one of which is weak (i.e. always

<< kT ) and the other ‘short range (compared to the inter-particle spacing).




We will show that such a division is always possible for systems with

small plasma parameter.

The results include what is believed to be the first "dynamic"
derivation of the equation of state for an electron gas which is correct
through second order in the plasma parsmeter. In part II, & similar method

will be used to derive & convergent kinetic equation for the electron gas.

2. General Formalism

While we are primarily interested in the electron gas in a
neutralizing backround, we avold immediate specialization to this case
so that the theory may also be applied to other systems (e.g. multi-
component plasmas with repulsive cores). We suppose an arbitrary number
of types with N, of type o . The particles are numbered from
l1toN= ZN, and the ith particle is specified by its position Ry

and its type o . We shall use the shorthand X 3=(Ry, oy)-

The class of systems under consideration are those for which
the interaction between any two particles of the same or different types
mey be split into two parts ¢y and ¢ such that

W(|§|,°,T)=0, |B|>aOT3

1
L a30 . (1)
—_— <1, allo, v ;
v
where
v = lim \'
20 —




and

‘( |.B,|: g, T)
e

<<1l, all |R|, 0, T, (3)

where 6 is the temperature in energy units.

The spatial s-particle distribution function is defined by

]

s -¥n oy

v |l| Ngy f...fd§5+l... d’.BNexp{———e___}
i= '

s - -
oo [ e oy o o)
where
¥y = I Z \If(lBl‘BJl )Ui:Uj) (5)
1<jgN
oy = == ¢( |R; - R. Gy 5,05 ) (6)
1<jgN R RRAERRE

Taking the gradient of (ll-) with respect to the position of the ith
particle and letting Vow, N-ow, V/N finite, one finds the

hierarchy of equations

Vi ng +

Vi (g +¥g) + elv fdx ngyy (%) Vi[w(xi,x)

+ ¢(X1,X)} =0 (7)

Here we have suppressed the arguments Xj... X g» and used the shorthand

fdxffd§§ (8')




Tt is useful to divide out a Boltzmann factor for the y - potential,

i.e. we set
ng = Mg e"I’S/e

to obtain
m 1
V—]_ms"'.é.s_Vi ¢s +©-—— deS+l (X) l+fs(X) i°(xi,x)
-1 Jaxmg, (X vy £, K) =0
v

where

£,(0 = fg (X1.eeXs5%) = e-¥s/o_ 1

= i]’l l:l+f(xi,x):| -1
and

£ xpx)z £ (xq;x) = e V(X 1, X)/6_4

is the function introduced by Mayer. We note that

f(x4,Xx)=0 |,131"E‘> 8g40

As boundery conditions we must require that the correlation

between the particle positions must vanish as the particle separations

g0 to « . In our nomalization this is equivalent to

s
lim mg = TT NO i

-

(9)

(10)

(11)

(12)

(13)

(14)



The next three sections are devoted to an approximation scheme for
solving (10) with the boundary conditions (1%) and the basic assumptions

(1), (3).

3. Ordinary Gas Mixtures

In order to illustrate the methods we will firs't consider two
special cases., The first of these is the case of ordinary gas mixtures,
for which we may take ¢ to be identically zero (i.e. the entire potential

is short range). Then (10) is simplified to

Vi ng =~—i—f dXmgyq (X)V; £ (%) (15)

But f (%) venishes if

|§\-Ri|> CR— lg ig s

It follows that the right hand side will be smaller than the left by a

factor of order &g a3 where & 1s the largestrof the ag . (according
v

to (1) this factor will be small). This suggests an expansion of the

Dg in powers of the density corresponding to the usual virial expansion
i.e.
(n)
> s (16)
Substituting (16) in (15) and equating like powers of <_¢L{> ,
ore finds '

(n)
Vi msn .=f ax snf;r;t)(X)Vi (x) (17)
- 5 -



In ot order one has

V. mgo) =0
or (0) s, N (18)
mg / = const = TT'( i )
i=1 N
where the constant has been determined from (14).
The first order equation is
(1) (o) N (19)
Vv mg = mg dX< N0>Vi fs (x)
or
1) _ o] N
mg = mg) fdx< N0> £ (X) + const (20)
The constant is again determined by the boundary condition, which requires
(1) _
all RiJ—-)oo

The limit of the integral in (20) is determined by using the expansion
(11) for fg in terms of the Mayer f's and observing that terms containing
two or more Mayer functions will give no contribution to the integral in

the limit as all RiJ—)oo. Thus

N S N
lim ax __9f (x)= T [ax_9f (x4 %)
2ll Ryjoe N i=1 N (22)

and

m(l)=mio) fdx Yo [fs (X qeeeXgs %) - z f(xi,x)]

5 N 1=1 (23)

-6 -




The second order calculation, of which we omit the details, gives

(2) g N ; i
mg, =.%_{UaT<fS(x)- ff(xi”‘)>]

+fdxfdx’<“_§.><l_\'ﬁ.:> £( % X% [ £.( %) fS(X’)
. |

- = f(X %) £(% ,x’)]} (24)

= i i
i=1

One could go on in this fashion to any desired order in the small parameter,

although it seems difficult to calculate the general term(however cf.Cohenll).

4, Weak Interactions

The second special case we will\éonsider is the class of systems
for which the interaction potential is << for all particle separations.
While such systems appear to be rare,their consideration will prove useful
in understanding sysiems, such as a plasma, where the interaction 1s weak

through most of its range.

In this weak interaction limit we may set the V's and f's

equal to zero to obtain

i]; fdx Mgt} (X) Vj_ .( Xi» X) =0 (25)

O
v i ms + T Vi QS +

In view of our assumption (3) about the nature of the potential , the
second term will be smaller than the first by at least a factor of ‘max/e'

On the other hand the integral term may be estimated as the gradient of

a function which has the order of magnitude 3
L <> Rp
e v

where <¢> 1is the average potential and R, 1is the range (as a function

(o]

-7 -



of R )of e(xjX ) or mgyy (Xqe-eeXgrX ), whichever is smaller.

For a plasma, R, is the Debye length, and
2
e
R,

0

<> =

thus the integral term in (25) is the same order of magnitude as the first
term. Thus the situation for weak, long range forces is exactly the reverse

of that for the short range interactions discussed in Section 3.

These considerations suggest that a suitable approximation scheme
for the solution of (25) would be to formally introduce a parameter €
in front of the second term, expand mg 1in powers of € , and equate like
powers. The only difficulty with this approach is that the resulting
equations relate a given approximation for mg to mgyy in the same

approximation. Therefore, in order to insure a determinate set of equations,

it is convenient to introduce a second parameter (say B ) as the co-
efficient of the integral term. Since, as noted above, the integral term
will not be small in general, we may not treat & as a small parameter,

and must include all powers of 3 for each power of € . Physically,

this corresponds to considering, instead of a Coulomb potential, a Yukawa
potential ( é;fRdependence) with o large enough to ensure convergence of
the infinite sums which occur; the results are then analytically continued
down to «a =0 (this notion was first introduced by Mayers). In this sense,
as a limit of the results for a screened potential, the results will be

unique.

Accordingly we rewrite (25) as

Vimg * oemg gy o5 * 00 de myr (x) vy e(xyHx) =0 (o51)
6 ev

-8 -




expand m

m, = z T L&l mgp,‘l) = ¥ &P mgp) (26)
p=0 q=0 p=0

and equate like powers to obtain

(P"l:Q)
s 1 (p,a-1)
Vi m{Pa) + ——— y, o, + Axmgya ! (X) V4 (X,X ) =0 (27)

ev

For bounday conditions, we require

U
lim mgo,o) < 1 > gp’Q) =0, porgq>0 (28)
all Rij_)°° all R 13—

For p =0, one has

Vi mgo,o) = 0 (29)

vy mi%e) - - f ax m{Q2-1) g, o (x,,%) (30)

The solution of (29) with (28) is

s N
0,0 o
n%% o S (31)
i=1 N
and (30) with q =1 becomes
(0,0) N
Vimgo,l) .. s fdx g Vi ¢ (%X,%x) =0 (32)
6 v N

vhere the last step follows because & XX ) depends on Bi » R only

-0 o
7



through |R; - R| . 1In view of (28), (32) implies

i

w1 g (33)

and it immediately follows from (28) and (30) that

mgo’q) =0 qa>0 (34)

Turning to p =1, one finds

(1.0) (0,0)

1,0 m

vy o N se v, 0, = O (35)
and

v, mgl:‘l) + .___elv de mgiiq'l) (x)yye(xqx) =0 (36)

vwhere we have used (34). Thus
(0,0)
n{h0) o . £ o, (37)

(this would be the leading signifigant term if ¢ were both weak and short

range). Substituting (37) into (36) with g=1 , and noting that (cf. (6))

S
O gy (XgeeeeXgrX) =0 (Xgeeeexg) + Jfl"(’&”‘) , (38)
one finds
(0,0)
(1,1) _ __m.___f No 3

Vi mg? Tt = 5 v dx v ji:l@(xd,)Ovi«o(xi,x) (39)
which has the =solution

(1 1) mgO,O)f NU ( ) ( ) mgo,O) (1)
m 7 = ax T (X LX) (X,X4) 50— 0

i 0% v ¥ iygs 1 7 0 s (ko)

- 10 -




where we have introduced the notation

(n) d n
? g =(-—-l—> Tz ¢n(xi,xj) :
6v i<igs

on (x g% ) =de(l),...dX(n) 1T < o) >

k=1 N

¢(xi:x(l)) o (x M, B e (x ™, X 3) s 0 =0

It is easy to show that

(0,0)
m(l’?} = . mS ’ (2\
s - 6 25

and in genersl (as may be proved by induction or verified by direct

substitution into (36)

(0,0)
(La)  m (a)
"s T T T 05

The total contribution to first order in the ratio of potential to

thermal energy is given by suming over q :

1) = (La) _mwm)< QZ >

Q=0 ° 5 )

- 11 -
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(k2)

(43)

(k)

(45)



The quantity

¢]: = qgo ° S;Q) = 1%25 * (Xj_’x .‘]) (16)
is the summed contribaution of all "chain type" interactions in which each
particle is interacting with only two others. This effectively replaces
the (possibly) infinite range potential &; by a shielded potential.

If ¢ 1is the Coulomb potential, it is easy to show that % will be
the Debye potential. In Section 6 we will calculate ¢, for a slightly

different choice of ¢ . It should be remarked that (45) could also

have been obtained by omitting the 5 expansion and introducing the

Ansatz
5
mgl) = &I mél) ( x45% J) 11} m§°) (o) - (47)
ks ki, §

In our treatment, (47) appears as a consequence rather than an additional

assumption.
For p=2 , (27) becomes

(q
2,q-1
v, MCT R (8 (.“'_:_)> v, 0, * ;‘—vdemi_uq )(x)vi o( x45x)=0
(43)

The algebra involved in solving these equations is considerably more
involved than that of the first order equations, so we will here merely
state the result (cf. work in footnote 7 for details ):

-12 -




D 2
© (2 (0,0) %s
mg = & > om0 {%‘(T)
q=0

N
o] fax g [ zzz¢D(xi,x)¢D(xj,x)¢D(xk,x)
N i< <K s

2
+¥ 2z oy (xx) ¢D(xj,x)}

*;;ﬁ—vafdxf@c[%(xm]zzz o (x1,%) ab(x,xj)} (49)

<Jigs

as expected, (49) and (45) depend on ¢ only through the shielded potential

®y. As in the short range case, we will not go beyond second order.

5. The General Case

We now return to the general situation where neither ¢ nor ¢

are zero, rewrite (10) as

m
Vy B - "%"_/:ixms+l(x)vifs(>()+ es Vi®s

+ E_%_defs (%) mgy (x) VW o(x4,%

+ ei fax mgey (x) Wy o(x4,%) =0 (10)

and study it term by term. Just as 1in Section 3 and 4 we estimate the

relative magnitudes of the first three terms as

1: Uwad/ v: e /0

- 13 -



Because of the factor fg(X), the integrand of the fourth term will have
a range of order 2, and its felative magnitude may be estimated as

(hx 23/v) ° (<¢>/6 ), i.e..prdportional to both small parameters.

The last term is more difficult, since it is sensitive to the range of
mgy1 (x). There will be some terms in mgyy (X) which contain

in such a way that their range is of order a ; thelr contribution

to the fifth term will again be proportional to both small parameters.

On the other hand, there will be some terﬁé (such as those independent

of ¥ ) which may have a range 32 <_i’_£___> ;,3 their contribution will

be 0(1). Thus it is convenient to split the function mgyy ( Xl...Xs,X)

into two parts:

meey (X)) = Fgey (X)) + Tgg (%) (50)

where T_, q ( X) consists of all terms in mg,y (X ) which vanish

for

3
IR -R|>b, 1=1...5; Arb oo 1,

v
and Mg, ( X) contains all the remaining terms. (This division may be
made unique by expressing the results in temms of the usual graphs; the
essential point is that TW_,; contains all contributions whose_range

is determined by the range of V ).

We will now introduce three formal perameters into (10):
A , the "range parameter" for ¢ , and € and & , which have the

same signifigence as in Section 4 (it is not convenient to use (1/v)

- 14 -



as a parameter as in Section 3, since it occurs in at least one place
where it may not be treated as small). 1In view of the above discussion of

the relative magnitude of the termms in (10), we mey write it as

Vims"%%lﬁu myl(w Vifsa) + :ms Vios

¥ zevfdx[fs (X) mgyy (X) + Hgyy (X)] Vi ¢(x,,X%)

ﬁsﬂ()O Vi ¢(Xi,X) = 0 ; (10’)

we reiterate that the intorduction of the formal parameters in (10 ’)

is a way of noting that the relative magnitudes of the terms are
L].j‘ta3 ‘max )+1ta3 <> <& h-ﬂRg
l. v ° 6 ° v e . 9 v

vhere a is the range of Vv, and R, 1is the range of ¢ . We then

make a triple expansion of mg

n
m = L5y mgn:P:q) A €P Sq
(51)
= sz w{™P) \m P
and equate like powers to find
(n,p,9) -1
Vi omg - ’?lr‘f o w00 v, ()
m(n)P“l:Q) (n 1 1 q)
+ ______se Vi ¢ * elv de [ £ (X) mgy PR ()
n-1,p-1
+ ﬁg"l'l »P-1,a) (X) ] Vj_ ¢(Xi’x)
1 ~(1n,p,a-1)
= fdx Tl (X)W ¢(x{,X) =0 (52)

- 15 -



For p=q=0 , the equations are the same as those in Section 3,

save for the factor of —-%- in front of the integral. Thus we may
immediately write
N
5
0,0,0 93
n{ %0 A = (53)
1 N
(0,0,0)
m N s
mgl,O,O) - S.__fdx g [fs(x) - = f(X4,X )} (54)
v N i=1

0,0,0
(0,0,0)

mgz,o,O) _ __5_2;_2_ {[fdx 20 <fs (%) -iz f(Xi,X)> ]2
+ﬁd@(§g(?ﬁﬂmw>pumfum

v

- & £ x,x) f(xi,x’)}} (55)

i=1

Just as in Section L4, one easily shows that

(0,0,a)

m = 0 >0 . (56)

Further, since méi‘io’o) (Xx) eand mgf 0,0) (X ) contain only short
range contributions which vanish for lEi - R |> 2a (they depend only

on {, mnote ),

~ o~
1,0,0
n 00y y o W(200) () Lo (57)
and
n{1,0,4) = p(2,0,4) - o Q>0 (58)

- 16 -




On the other hand, if n=0 , the equations are independent

of ¢, thus

w0 (x) = al%Pe) (x) (59)

and the equations and results reduce to those of Section 4 [ equations

(b)), (41), (42), (49)]1 .

If we assume that the two small parameters are the same order of
magnitude, and restrict ourselves to contributions up to second order, the

only new equations are for n=p=1l:

(1,1,0) .mio) N [ >
Vi mg +Te—fd><—1f—_¢s+j=zl ¢(xj,x)]
n(®) - s
Vi £ (x) + —-—Tsr—e—fdx—-%ﬂ- _fs(x)-ji:lf(xj,x)] vV, o
o(©) .
= Jax g 2,000 vy e xpx) = o (60)
and
(0)

(1,1,q) . N ) ,(-_1\?% 3
v mgh e fax e | o (0o 5 qlx )|

&

v, £,(x)+ ;%-_fdxﬁgiil’q'l) (X)v; ox,;,x) =0 a>0 (61)

where we have used (53)) (51*): (55): (58): (M): (hl), (’"‘2), (38)) and

(49) for mgl’o’Q), mgo’l’Q) and mgO’O’Q) plus the fact that

_(0,0,0)

ms =

- 17 -




0
( mg »0,0) _ m:(so) bas infinite range).
is evident that (60) is of the form
Vi F(Xy-ee0Xy) =0

it is only necessary to determine the constant so that the boundary condi-

tion
1,1,0
1lim mg »1,0) = 0
a.llRi'j—)m
is satisfied. The result 1is
(o)
m N s
mgl’l’O) = ..._s.’_fdx g {QS [fs (x) - = f(Xi,X)
ve N i=1
s s
+ £ (x) £ e(X,X) - T (X ,X) ¢(X,X%X) (62)
s 1=1 1 1=1 1 i

We may expect that mgl’l’Q) will contain terms like those in mgl*’l’o),

q
with ¢ replaced by the convoluted potential <‘ 61 > ’q . Thus it
v

is useful +to make the substitution

nfHL,2) . k:gl,_l,q) +2(1,1,9) (63)
where
(1,1,q) m§°) No () :
kg - -5 [0 - e [fs(x) -1ilf(xi’X)]

S )
+ £g (%) < —‘-}g * . eg (x%) - (- _vl_e>q 121 ¢ (X4,%) f(Xi,X)}

1=1
(64)

~(1,1,0)
The criterion for calculating the long range part ks +;_ ’ (x)

is best expressed in terms of graphs. We associate a point with each fixed

variasble X ; or integration variable X, X/, etc.
- 18 -




a factor ¢ ( X,X”) 1is represented by a solid line between the points
X, X, and a factor f£(X,X’) by a dotted line (f bond). It

is then clear that the terms which contribute to kg, (or mg.,

will be those for which each path between the point ¥ and any of the

points X peeee X contains at least one ¢ bond (this includes those

S

terms independent of X, where the point X is not connected to any of the

points X; in the corresponding graph). It follows that

o~ N
= 4]
k1 (x) - k

s

()™ 0 3l w3 [0 Sy

S S
R ¢q(xj,x) + £(x,x”) = _¢q(x1,x’)
3=1 i=1

+ £, (x7) oq(x,x’)} (65)

where we have used

(a) (a)
Oy (XqeeeeX X)) =04

q s
o800 ) + - l )
(X foeeeX g — i;s:loq(xi_:x

(66)

and

£y (XgoeeeX oo X3XA = Ig (x7) [uf(x,x' )}f(x,x') (67)

-19 -



Substituting (63) and (65) into (61), one finds
v, ,(L,1,0) _<_ __;_>q+1 m(o)fdx _f“_q_fdx,_j‘_‘_cwj £(x, x°)
S ve S N . N
s

s e (x,x7) y, ¢(x %)
51 a1l g 1 1

+

v

= fd:x zéf{j_l’q'l)(x) V; ¢(xpHx) =0 (68)
0

Since mgl’l’o) = kgl’l’o)

it is easy to show that

(1,1,9) 1 o+l (0) Yo / NO’ /
I'S =<-——-———> ms fdx -ﬁ——fdx N f(X:X )

ve

zz s *q (x4,x) ’qe(x,xj) a>1 (70)
kjss ql+9.2=<1-1

Summing (63), (64), (70) over g glves the result to first order in

each small parameter:

()

(1,1) - 1,1,q 5 No D
s =q§o mg”)=--ﬁfdx 5 {¢s[fs§X)

s

s
- z £(x ,x)} + £ (x) = o (%X,,X)
1=1 i s 1=1 D i

- 20 -




s ‘ N_»,
. g
- = (X, X) (X5, x) - L fdx’__._ £f( x,x”)
1=1 + * 1 ve N ’
22 ep(xyx) ep(x4 xj)} (71)
i< <8

This completes the calculations through second order. In the next
two sections we will apply them to the calculation of the equation of state

for an electron gas in a positive background.

6. The Electron Gas; The Screened Potential

As mentioned in the introduction, the main weakness of previous
dynamic derivations of the equilibrium properties of the electron gas is
the assumption that the potential is weak compared to the thermal energy,
which clearly cannot be satisfied everywhere for point electrons. In
this section we show how the Coulomb potential can be broken into two
parts which satisfy respectively the short range condition (1) and the
"weakness" restriction (3). One such division is (we now specialize

to one type — electrons with charge (-e) )

2
v(R) = -2 g(a‘R) (72)
+(R) = e®_5(R-a) (73)
R

where S(z) 1is the unit step function. It is only necessary to show that

we can find an a such that

3
&_ﬂ_a___ << 1 (7).;.)

v

2
ze << 1 (75)

- 21 -




which insures that (1) and (3) will be satisfied. Equations (7h4) and

(75) may be combined as

2
€ v
2 << a <L <k*“

1/3
)

Such a choice of a will be possible provided

3

)
<< 1

v

(76)

(77)

But this is equivalent to the usual condition that the number of particles

in a Debye sphere should be large, or that the so called plasms parameter

is small, and will always be assumed. The results will clearly not be

sensitive to the choice of & , nor indeed to the particular way in which

the potential is divided; for definiteness we choose

e2
a = T
where
2
hye
k= [ 2=
e v

is the reciprocal Debye length. For this choice, the two small

parameters are equal:

krad = €2 e
v 6 a

(78)

(79)

(80)

where ¢ 1s the real small parameter of the problem, the plasma parameter.

- 22 .




We now proceed to specialize the results of the preceding sections
to this case; ultimately we will find the equation of state through second
order in € . The first step is to calculate the shielded potential

¢ p corresponding to ¢ . This is given by

¢, (R) = %(-.ﬁo_ : ¢q(R) (81)
g=
But
q
¢q(R)- dR,...dR;, ¢(R)) ¢(R2)...¢(Rq).¢(|5-§’13n|)
=1 fd/lge-ihbg ( o (x) )3 (82)
(2xn -
where
¢(1;)=fd5eik'R * (IR (83)
¢, (R) = % dk o (k) z (-0(x) -1kR
LT C Rkt
Ch [“ ) | | (84)
ve

where the convergence of the geometric series under the integral sign
has been assumed (actually one should put a factor e~®R ip (83); to
insure convergence for all k , one must require o > x . The result

is éontinued down to = 0 after the sum is done). For our choice of

o(R), the calculation of ¢(k)is trivial, and yields
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2
o(x) = 21 e coska (85)
k2

(this is also to be understood in the sense of the imit of the result
for a damped potentisl). We substitute (85) in (84) and make a change

of varlables

k =g X (86)
to obtain
op (R) = 2 eRQ j: 4X Xsin ) X cos® X (87)
o [XxX® + cosd X ]
where |
A=k R (88)
and
5 =g & =/¢ (89)

We wish to approximate (87) in such a way as to give results
correct through €2 to the quantities U/ 6, where U 1is the
ensemble average of the N ﬁarticle potential. We will show that this
can be done by replacing the cosine in the denominator by the first two

terms in a power series:

‘1(30) _ 2¢? f dX X sinA X cos® X (90)
2
xR o 1+ X2 <l~ o >
2

Since the integrand is an even function of X, we may replace the integral

by 1/2 the integral from (-«, ) and use the method of residues.
The calculation is straightforward and gives

-2k -




b4

o(<H)]}

(here we have included all terms through

oD

The remainder integral is

(1) (0)
¢D = ¢p -~ ¢p =
But

z2+c055z 2

SO

5] = =

A
S (A-3) T T —=x2  cosh )
A
sinh.__.__é._ }
Jl-j’r
kR kR e + O( ee):l
S el
(91)
€2 in 01(30)/9-

2 [ie2(a S ]

2z sinA 2 cas b

z[l 52)
2

2

- cos B z}

e
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o 2
f dz z sin Az cos&z[l - ﬁlsl_ - cos&z:l

(92)

(93)

(9%)



The integral can again be evaluated by residues; rather than quote the
rather lengthy result, we merely state that it has the form
\ (1)

¢p ‘ <6|S(R - 2a) e’ 5(R) + s(2a - R) n(R) | (95)

whére
g(R) = 0 <e%> ; n(R) =0 (e%> (96)

The long range part is clearly negligible for our purposes; for the
short range part, we observe that in calculating U/e , Wwe introduce
another factor of the potential and integrate over a small volume of
radius 2a ; thus we will have an additional factor of

ER _e_".>=u_¢_r_(gef__..€
V6 Jp s \ R 2Vve = (o1)

and the contribution of h will also be negligible.

It will be observed that the leading term in ¢ at long range
is just the Debye potential as expected. At short range, the signifigant
term is just the negative of the Coulomb potential of particles separated
by a Debye length. Thus the "screening" effect produces at éhor£ range
a weak attractive effective potential (however the repulsive ¥ potential

dominates).
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7. The Average Energy: FEquation of State and Thermodynamic Quantities

We now turn to the computation of the thermodynamic properties

for the electron gas. The simplest of these to calculate is the average

interaction energy:

- (v + )/
f f .o.dRy e ‘YN oy ‘G(M +yy) v (98)
f f aB)---aBy e (o vwfo '

where U, represents the effect of the neutralizing background. In

terms of the two particle distribution this may be written as

v L [ £ () -1 -

v

,21%_[@’13 (q; (R) +¢(R)> l:e"l“'(R)/é mo(R) - l] (99)

We wish to use the results of the preceding sections to calculate
th@ through second order in the plasma parameter. We wiil,separately
calculate the contribution of each term of Section 5, and label the

corresponding contributions to U with the same numbers. We start

w1th the contribution of m( ) =1

U, = 2 [ar (W (R) +e (R)> [e-“RVGm_g” ; 1}

2v
e2

<N9> lure> f am('ﬁ 1) (100)
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The integral may be evaluated approximately by successive integration

by parts:

2 32
2 - £
Uy = ——ENG K { ——Z <e 6a -~ l)

2 e2
2 - & 2 a ~ IR
s efa oo 4 €8 f dRe B (201)
26 292 o R
We recall that
ka = e/ 0a = Je (102)

so the exponentials may be expanded; in the integral term we substitute

R=e2/(62) . (103)

Then

+ o( e%> } (204)
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where we have used the familiar result

[a 5= - - (5 +1088) + os)  (205)
o)

where 7 4is the Euler-Mascheroni constant.

We will now show that the contribution of the short range terms

mél’o) and m§2’0) is negligible (i.e. o(€2) ). From (54),

(58), (11), (12) and (72),

2
2 e

U0 = “}ﬁfd}igﬁ I:e--G_ﬁ S(a-R)+S(R-a)}

2 2
- L e /
fd.g’(e 934-1> <e' elg—g"[ -1 S(a—R’) s(a-|§-§_"|~)

2
2 ©0
_ )-l-ﬁveNee £ dR [e-é-e-ﬁ S(a-R)+ S(R-a):l
2 (R+R%)

fadR’R’<e'—e§ -l>][ dz z S(a - z) <e-ae'i -l> (106)

R - ®]

For purposes of estimation we may replace thesquare bracket (which is always
less than one) by unity and integrate by parts in the R integral to

obtain
2 n a - e2
IUlo < VO k_ dRRf aR”r”(e” g7 -1
’ v o o
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[(R+33 s(a -r-R") (e' G(Reer) -l>

2
e

2, / -
_(R-R)S(a-|R-R|)<e ‘“—'_‘7GIR_R‘ -1>H (107)
/
We first consider the terms involving R+ R ; since
/ /
R+R 2R 20
2 2
_ e > _ e 08)
1-e o (R+R7) l1-e" 387 ) =20 (1

so the contribution of the first term in (107) may be estimated as

2 a 8-R , ,
|U§_}())| < E_G__’L_L_.f dR R ar’r” (r+Rr”)
v o]

<e___§§, ) 1)2 (109)

The integral mey be done by integration by parts, similar to the derivation

of (104); the result is

p)
(1) N 2
- No 3 2 1
|U1)0| <P e [E+ %+§.log2+_6_loge

+ 0(/elog € ) :l (110)

The terms Involving |R - R’ | are somewhat more difficult, but one can

show that they are the same order. Thus

Ul,O = of 62) . (111)
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While this result may seem rather surprising, it can be understood
qualitatively as follows: While one might expect mél’o) tobe O(/c),
for the particular ¥ chosen here each factor of f(R) effectively

contributes another factor of /e (or possibly /elog € ) on

integration. The factor of the potential gives another /e , @and the
1.0 3 ‘
short range of mé ? ) produces a factor of —Evﬂi- = Je .
E: 2
This suggests a total contribution of order € or € log ¢ ,

1

0
in agreement with (110). Since mg2’ 0) is less than mgl’ ) by a
factor of /€ and is equally short range, one also has
Ua’o = O( €2) . (112)

We now turn to the terms involving ¢ . From (45),

 hxme? f -y (R)/e
Uo,z.""'é?'é"‘ ] dR R OD(R)e (113)

For ¢, we substitute the expression (91); the integrals are straight-

forward and give

2
2
- _N@ o _ 3
UO,l = —-2-- [ et ¢ —)f— + O<€?> ] (llh')

The second order contribution is

wer & Ja [ ew ] {(45)
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- 2 s 2 /’ Y
— aR” @ R ¢ R-R
ve f~ D( ) D (|~ ~D

+—;2_l;z[' fdli,fd?i”" <°D(R,)>2 . (2" ‘DHE'E, . Effl)}.
(115)

It is easy to show that the integrals involving  are neglibible,

largely because of their short range. For the others, we use the facts

that
[« o in-2"D-
~ve [oD (R) - Q(R):] (116)

and

[ oy@ e ir-2" -

- v Ok o) 5 (R)

(117)
2 d Kk :

e2, R, a, const ,

which follow from the definition (81) of ¢p as a sum of convolutions

of ¢ . The use of (116), (117) in (115) leads to

o falwf [owe 12 o
= 32 [-e‘? (y+1log 3/e)

R

6

+ O(eg>] (118)

Where we have used (91) and (105).

2~

0,
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Finally, we calculate the contribution of the "cross 'ten'n";
mél’ l). Once again we can neglect the short range potential
in (99); for similar reasons, any terms in (71) containing two factors
of "f" gives a negligible contribution. On the remaining terms we again

use (116), (117), to obtain

g [0 far(i ) o)
- He [ &+ of f)] (119)

Adding the results = (104), (111), (112), (11k4), (118) and (119) ,

we have

U= ge I:- e + &° <-7- %1og3e-+—-§—> + o &) (120)

Since most authors calculate the Helmholtz free energy instead of U,

we will calculate it from the formula

F=Fo+fL ar U (r) (121)
o A

vhere Fg is the perfect gas free energy and U(A) 1is the function
obtained by replacing e2 everywvhere by e27\ . From the definition
of €,k , we may obtain U(A) from (120) by the substitution

3
2

€ ~» AN €
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The integral in (121) is then straightforward, end we find

2

Neo 1 11

(F-F)=-———{—e+ _£_ I:- -% log 3e +—:1
° 3 2 7"z 12

+ of €?) } (122)

‘ From (122), one may derive all the thermodynamic quantities; in

particular, the equation of state is given by

v ol €?) } (123)
which could also have been derived from the relation
] U
p=v5 3v (124)

The results (122), (123), are identical with those obtained by Abe?

and Fried.man3, using diagrammatic techniques.

8. Summary and Discussion

We have developed a general method for treating systems whose
1 interaction consists of two parts, one of which is short range, and the
other weak. It has further been shown that such a scheme may be used to

describe an electron gas in a neutralizing background. provided the plasma

- 34 -




pareameter is small. Finally, explicit results have been obtained for the »
thermodynamic quantities, valid through second ofder in the plasma para-
meter. This is believed to be the first such derivation based 6n the nature
of the potential rather than on topological ‘considerations. In a sub=
sequent paper, we show how the method may be genei'alizet_i to handle. non-
equilibrium situations. In particular, we will derive a kinetic equation

which is not subject to the usual short range divergence.
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